125 research outputs found

    Signatures of shape phase transitions in odd-mass nuclei

    Full text link
    Quantum phase transitions between competing ground-state shapes of atomic nuclei with an odd number of protons or neutrons are investigated in a microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. The boson-core Hamiltonian, as well as the single-particle energies and occupation probabilities of the unpaired nucleon, are completely determined by constrained self-consistent mean-field calculations for a specific choice of the energy density functional and paring interaction, and only the strength parameters of the particle-core coupling are adjusted to reproduce selected spectroscopic properties of the odd-mass system. We apply this method to odd-A Eu and Sm isotopes with neutron number N90N \approx 90, and explore the influence of the single unpaired fermion on the occurrence of a shape phase transition. Collective wave functions of low-energy states are used to compute quantities that can be related to quantum order parameters: deformations, excitation energies, E2 transition rates and separation energies, and their evolution with the control parameter (neutron number) is analysed.Comment: 15 pages, 13 figures; Accepted for publication in Phys. Rev.

    Shape-phase transitions in odd-mass γ\gamma-soft nuclei with mass A130A\approx 130

    Full text link
    Quantum phase transitions between competing equilibrium shapes of nuclei with an odd number of nucleons are explored using a microscopic framework of nuclear energy density functionals and a particle-boson core coupling model. The boson Hamiltonian for the even-even core nucleus, as well as the spherical single-particle energies and occupation probabilities of unpaired nucleons, are completely determined by a constrained self-consistent mean-field calculation for a specific choice of the energy density functional and pairing interaction. Only the strength parameters of the particle-core coupling have to be adjusted to reproduce a few empirical low-energy spectroscopic properties of the corresponding odd-mass system. The model is applied to the odd-A Ba, Xe, La and Cs isotopes with mass A130A\approx 130, for which the corresponding even-even Ba and Xe nuclei present a typical case of γ\gamma-soft nuclear potential. The theoretical results reproduce the experimental low-energy excitation spectra and electromagnetic properties, and confirm that a phase transition between nearly spherical and γ\gamma-soft nuclear shapes occurs also in the odd-A systems.Comment: 13 pages, 15 figures, 9 table

    Random-phase approximation based on relativistic point-coupling models

    Get PDF
    The matrix equations of the random-phase approximation (RPA) are derived for the point-coupling Lagrangian of the relativistic mean-field (RMF) model. Fully consistent RMF plus (quasiparticle) RPA illustrative calculations of the isoscalar monopole, isovector dipole and isoscalar quadrupole response of spherical medium-heavy and heavy nuclei, test the phenomenological effective interactions of the point-coupling RMF model. A comparison with experiment shows that the best point-coupling effective interactions accurately reproduce not only ground-state properties, but also data on excitation energies of giant resonances.Comment: 24 pages, 4 figures, accepted for publication in Physical Review

    Quadrupole Collective Dynamics from Energy Density Functionals: Collective Hamiltonian and the Interacting Boson Model

    Get PDF
    Microscopic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this work we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations, and the Interacting Boson Model. The two models are compared in a study of the evolution of non-axial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196^{192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM-2 Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ\gamma-vibration bands are compared to the corresponding sequences of experimental states.Comment: 10 pages, 4 figures; to be published in Phys. Rev.

    Relativistic Nuclear Energy Density Functionals: Mean-Field and Beyond

    Full text link
    Relativistic energy density functionals (EDF) have become a standard tool for nuclear structure calculations, providing a complete and accurate, global description of nuclear ground states and collective excitations. Guided by the medium dependence of the microscopic nucleon self-energies in nuclear matter, semi-empirical functionals have been adjusted to the nuclear matter equation of state and to bulk properties of finite nuclei, and applied to studies of arbitrarily heavy nuclei, exotic nuclei far from stability, and even systems at the nucleon drip-lines. REDF-based structure models have also been developed that go beyond the static mean-field approximation, and include collective correlations related to the restoration of broken symmetries and to fluctuations of collective variables. These models are employed in analyses of structure phenomena related to shell evolution, including detailed predictions of excitation spectra and electromagnetic transition rates.Comment: To be published in Progress in Particle and Nuclear Physic

    Relativistic Energy Density Functional Description of Shape Transition in Superheavy Nuclei

    Get PDF
    Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. A modern semi-empirical functional, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, is applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison of calculated masses, quadrupole deformations, and potential energy barriers to available data on actinide isotopes. Self-consistent mean-field calculations predict a variety of spherical, axial and triaxial shapes of long-lived superheavy nuclei, and their alpha-decay energies and half-lives are compared to data. A microscopic, REDF-based, quadrupole collective Hamiltonian model is used to study the effect of explicit treatment of collective correlations in the calculation of Q{\alpha} values and half-lives.Comment: 23 pages, 10 figure

    Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies

    Get PDF
    We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.Comment: 53 pages, 23 figures, accepted for publication in Physical Review

    β\beta-decay half-lives of neutron-rich nuclei and matter flow in the rr-process

    Get PDF
    The β\beta-decay half-lives of neutron-rich nuclei with 20Z5020 \leqslant Z \leqslant 50 are systematically investigated using the newly developed fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework. Available data are reproduced by including an isospin-dependent proton-neutron pairing interaction in the isoscalar channel of the RHFB+QRPA model. With the calculated β\beta-decay half-lives of neutron-rich nuclei a remarkable speeding up of rr-matter flow is predicted. This leads to enhanced rr-process abundances of elements with A140A \gtrsim 140, an important result for the understanding of the origin of heavy elements in the universe.Comment: 14 pages, 4 figure

    Superallowed Fermi transitions in RPA with a relativistic point-coupling energy functional

    Full text link
    The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic point-coupling energy functional is applied to evaluate the isospin symmetry-breaking corrections {\delta}c for the 0+\to0+ superallowed Fermi transitions. With these {\delta}c values, together with the available experimental ft values and the improved radiative corrections, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined. Even with the consideration of uncertainty, the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.Comment: 13 pages,2 figure
    corecore